9 research outputs found

    Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static splitting tension

    Get PDF
    The paper describes experimental and numerical results of quasi-static splitting tensile tests on concrete specimens at meso-scale level. The loading strip was made of plywood or steel. Fracture in concrete was detected at the aggregate level by means of three nondestructive methods: 3D x-ray micro-computed tomography, 2D scanning electron microscope and manual 2D digital microscope. The discrete element method was used to directly simulate experiments at the meso-scale. Concrete was modelled as a random heterogeneous 4-phase material composed of aggregate particles, cement matrix, interfacial transitional zones and macro-voids based on micro-tomographic images. Two-dimensional calculations with real concrete microstructure were carried out. A satisfactory agreement between numerical and experimental results was achieved. The evolution of contact normal forces, coordination number, broken contacts, grain rotations and crack displacements was also investigated. In addition, each energy component was calculated and analyzed at a different stress-displacement stage

    Discrete element modeling of the machining processes of brittle materials: recent development and future prospective

    Get PDF

    Modeling single axis stretching and compressing in case of the aggregated concrete

    No full text
    Artykuł przedstawia wyniki modelowania betonu na poziomie kruszywa podczas ściskania i rozciągania jednoosiowego za pomocą metody elementów dyskretnych. Beton opisany został jako materiał 4-fazowy złożony z kruszywa, zaprawy cementowej, makroskopowych porów oraz stref przejściowych między kruszywem a zaprawą. Obliczenia dwuwymiarowe wykonano dla próbki kwadratowej 10×10 cm2 (ściskanie) oraz w kształcie kości psa 10×15 cm2 z przewężeniem w środku równym 6 cm (rozciąganie). Wyniki numeryczne porównano bezpośrednio z wynikami doświadczalnymi. Krzywe naprężenie-odkształcenie w obliczeniach numerycznych były podobne jak krzywe doświadczalne.The article presents the results of modeling process pertaining the crushed concrete material during compression and stretching in a single axis, with the use of the discrete elements method. Concrete is described as a 4-phase material consisting of aggregate, cement mortar, macroscopic pores and transition zones, between the crushed aggregate and the mortar. The two-dimensional calculations have been carried out for two square samples (10x10 sq. cm – compression) and in case of a bone-shaped sample, with dimensions of 10 x 15 sq cm, with a 6 cm narrow part in the middle (stretching). Numerical data was directly compared with the experimental results. The functions between deformation and stress, in the numerical calculations, matched the experiment results

    Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static splitting tension

    No full text
    The paper describes experimental and numerical results of quasi-static splitting tensile tests on concrete specimens at meso-scale level. The loading strip was made of plywood or steel. Fracture in concrete was detected at the aggregate level by means of three nondestructive methods: 3D x-ray micro-computed tomography, 2D scanning electron microscope and manual 2D digital microscope. The discrete element method was used to directly simulate experiments at the meso-scale. Concrete was modelled as a random heterogeneous 4-phase material composed of aggregate particles, cement matrix, interfacial transitional zones and macro-voids based on micro-tomographic images. Two-dimensional calculations with real concrete microstructure were carried out. A satisfactory agreement between numerical and experimental results was achieved. The evolution of contact normal forces, coordination number, broken contacts, grain rotations and crack displacements was also investigated. In addition, each energy component was calculated and analyzed at a different stress-displacement stage

    Interactive Random Graph Generation with Evolutionary Algorithms

    Get PDF
    This paper introduces an interactive system called GraphCuisine that lets users steer an Evolutionary Algorithm (EA) to create random graphs that match user-specified measures. Generating random graphs with particular characteristics is crucial for evaluating graph algorithms, layouts and visualization techniques. Current random graph generators provide limited control of the final characteristics of the graphs they generate. The situation is even harder when one wants to generate random graphs similar to a given one, all-in-all leading to a long iterative process that involves several steps of random graph generation, parameter changes, and visual inspection. Our system follows an approach based on interactive evolutionary computation. Fitting generator parameters to create graphs with pre-defined measures is an optimization problem, while assessing the quality of the resulting graphs often involves human subjective judgment. In this paper we describe the graph generation process from a user’s perspective, provide details about our evolutionary algorithm, and demonstrate how GraphCuisine is employed to generate graphs that mimic a given real-world network. An interactive demo of GraphCuisine can be found on our website http://www.aviz.fr/Research/Graphcuisine
    corecore